Practice Problems for final exam

1. True or False. Justify your answer.
(a). Let $G=\mathbb{C} \backslash\{z \in \mathbb{R}: z$ is an integer $\}$. Suppose $f \in H(G)$ such that $\mid f(z) \leq 1$ for all $z \in G$. Then f is a constant.
(b). Let $G=\{0<|z-1|<1\}$. There exists $f \in H(G)$ such that $\lim _{z \rightarrow 1}\left|(z-1)^{k} f(z)\right|=$ ∞, for all integer $k \geq 1$.
2. Suppose f has an essential singularity at 0 , and g has an essential singularity at 0 . Prove that at least one of the functions $f+g$ and $f g$ has an essential singularity at $z=0$.
3. Suppose f is a nonconstant entire function. Which of the following must be countably infinite?
(a). $f(\mathbb{Z})$
(b). $f(\mathbb{Q})$
(c). $f^{-1}(\mathbb{Q})$
4. Let f be a holomorphic function in the unit disk \mathbb{D} that is injective and satisfies $f(0)=0$ Prove that there exists a holomorphic function g in \mathbb{D} such that $(g(z))^{2}=f\left(z^{2}\right)$ for all $z \in \mathbb{D}$.
5. State Riemann Mapping Theorem, Runge's Theorem, Weierstrass Factorization Theorem, Mittag-Leffler's Theorem, Schwarz Reflection Principle.
6. Let $\left\{p_{n}\right\}_{n=1}^{\infty} \subset \mathbb{Z}^{+}$be the sequence of prime numbers. Prove there exists $f \in H(\mathbb{C})$ such that $f\left(p_{n}\right)=p_{n+1}$ for each n.
7. Let f be a continuous function on $\{0<|z| \leq 1\}$ that is analytic function on $\{0<|z|<1\}$. Assume $f(z)=0$ for every $z=e^{i \theta}$ with $\frac{\pi}{4}<\theta<\frac{\pi}{3}$. Prove $f \equiv 0$.
8. Let $A_{1}=\{z \in \mathbb{C}: 0<|z|<1\}$ and $A_{2}=\{z \in \mathbb{C}: 1<|z|<2\}$. Prove A_{1} and A_{2} are not conformally equivalent.
9. Describe all analytic functions on $\mathbb{C} \backslash\{0\}$ with the property that

$$
|f(z)| \leq C\left(|z|^{2}+\frac{1}{|z|^{\frac{1}{2}}}\right) \text { for some constant } C>0
$$

10. Homework problems.
